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SUMMARY 

An adaptive finite element method is developed and applied to study the ozone decomposition laminar flame. 
The method uses a semidiscrete, linear Galerkin approximation in which the size of the elements is controlled 
by an integral which minimizes the changes in mesh spacing. The sizes and locations of the elements are 
controlled by the location and magnitude of the largest temperature gradient. The numerical results obtained 
with this adaptive finite element method are compared with those obtained using fixed-node finite-difference 
schemes and an adaptive finite-difference method. It is shown that the adaptive finite element method 
developed here using 36 elements can yield as accurate flame speeds as fourth-order accurate, fixed-node, 
finite-difference methods when 272 collocation points are employed in the calculations. 
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INTRODUCTION 

The purpose of this paper is to develop an adaptive finite element method for reaction-diffusion 
equations. The method is also applied to study the ozone decomposition laminar flame. This flame 
has been the subject of numerous investigations. Of particular interest in this study are the works of 
Bledjian,' Margolis,2 Mein t je~ ,~  Reitz4 and Ramos.' 

Bledjian' employed a second-order, fixed-node, method of lines technique and computed a flame 
speed of 54.3 cm/s using 100 grid points. Margolis2 introduced an appropriate spline basis for the 
spatial variations, imposed collocation and boundary conditions and reduced the reaction- 
diffusion equations which govern the propagation of the ozone laminar flame in Lagrangian co- 
ordinates to a stiff initial value problem which was solved by standard techniques. Margolis used 
sixth-order B-splines and 272 collocation points and computed a flame speed of 49.7cm/s. 
Meintjes3 employed an explicit predictor-corrector method to study the same reaction-diffusion 
equations as Bledjian' and Margolis2 and obtained a flame speed of 48 k 2cm/s when 121 grid 
points were employed in the calculations. The k 2 cm/s error observed by Meintjes3 was believed 
to be due to the calculation of the flame speed in real co-ordinates. This error could be minimized 
by calculating the flame speed in Lagrangian co-ordinates. 

Reitz4 employed a second-order, explicit, adaptive, Saul'yev6 method and 30 grid points, and 
computed a flame speed of 49.8 k 0 1 cm/s. This speed is in excellent agreement with that obtained 
by Margolis2 who used a fourth-order accurate method. Ramos5 developed a fourth-order 
accurate method of lines technique, a fourth-order accurate operator-splitting algorithm, three 
time-linearization algorithms, a moving finite element method, and an adaptive finite element 

027 1-209 1/85/0 1 001 3-1 1 $01.10 
0 1985 by John Wiley & Sons, Ltd. 

Received 12 September 1983 
Revised 6 February 1984 



14 J. I. RAMOS 

technique. The time-linearization schemes developed by Ramos’ linearized the reaction terms in 
such a manner that the system of three reaction-diffusion equations which govern the ozone 
decomposition flame propagation is reduced to a system of uncoupled, linear equations which 
were solved by means of the standard tridiagonal matrix a lg~r i thm.~  The first time- 
linearization algorithm developed by Ramos’ was first-order accurate in time and second-order 
accurate in space; the second time-linearization algorithm was second-order accurate in both space 
and time; and the third time-linearization algorithm was second-order accurate in time and fourth- 
order accurate in space. The flame speeds computed with these three time-linearization schemes 
were 48.91 cm/s, 48.97 cmjs and 49.38 cm/s, respectively. These speeds were computed using 121 
grid points. 

The moving finite element method developed by Ramos’ moves the grid according to the 
previously computed steady state flame speed but produces some errors because this speed is not 
steady at the beginning of the calculations. The steady state flame speed computed by Ramos’ 
using the moving finite element method and 36 elements was 49.26cm/s. In the adaptive finite 
element method, the elements were moved according to the location of the maximum temperature 
gradient. The adaptive finite element method with 36 elements produced a flame speed of 
49.41 cm/s which compares very favourably with the speeds of 49.57 cm/s and 49.51 cm/s computed 
using 121 grid points with the fourth-order accurate method of lines and the fourth-order accurate 
operator-splitting technique developed by Ramos.’ 

In this paper, a new adaptive finite element method is developed and applied to study the ozone 
decomposition laminar flame. The method uses a linear, semidiscrete, Galerkin approximation in 
which the mesh spacing is minimized according to the location of the maximum temperature 
gradient. The method is based on some ideas developed by Reitz4 for finite-difference schemes and 
employs a projection procedure for the calculation of the nodal amplitudes in the new grid. A 
similar projection method has also been used by Lee and Ramos’ in their calculations of confined 
flame propagation problems. The results of the adaptive finite element method are compared with 
other numerical calculations which were performed with fixed-node finite-difference algorithms. 

FORMULATION OF THE PROBLEM 

We consider the propagation of a one-dimensional adiabatic flame through a combustible mixture 
of oxygen (0,) and ozone (03). We assume that body forces are negligible, that the Mach number is 
small and that the species diffuse according to Fick’s law with equal mass diffusivities for all of 
them. Under these assumptions, the equations governing the conservation of mass, momentum, 
energy and species reduce to 

ap/at + qPu)/ax = o 
p = p o  = constant 

(1) 

(2) 
3 

i =  1 
pC,[dT/at + udT/ax] = a(AaT/dx)/dx - C hPwi (3) 

N- 1 

Y & , = l -  c Yi 
j =  1 

(5) 

where p is the density; t( 0) is the time; x( - co < x < co) is the axial co-ordinate; u is the axial 
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velocity; p is the pressure ( p ,  = 0.821 atm); T is the temperature; C, is the specific heat at constant 
pressure (C, = 0.2524 cal/g/K); A is the thermal conductivity (A = 9.1 12 x cal/cm/s/K); hP is 
the enthalpy of formation of species i; wi is the reaction rate for species i; Y is the species mass 
fraction; N is the number of species; is the universal gas constant; and, Wi is the molecular weight 
of species i. 

Equations (I) ,  (3) and (4) can be reduced to a system of reaction-diffusion equations by 
introducing the mapping 

defined by 

Introducing equations (7) and (8) into equations (2) and (4), assuming that the Lewis number is 
equal to 1 and CI = p 2 D  = constant ( p 2 D  = 4-335781 3 x 10-7g2/cm4/s), we obtain 

N 

i =  1 
aT/at* = ua2T/a@2 - hPwi/p (9) 

aYi/at* = aa2Yi/a$2 + wijp, i = 1,. . . , N - t (10) 
In order to fully specify the problem we introduce the chemical reactions which govern the ozone 
decomposition. These reactions can be written as 

0 + 0, + xao, + x (1 1) 

0 + 0, *20, (12) 
0, + xa 2 0  + x (13) 

where X represents a molecule of 0, 0, or O,, and where the values of the reaction rates can be 
found, for example, in Reference 2. We only note here that the reaction rate terms, wi, are highly 
non-linear functions of the temperature. We also define here Y, and Y, as the mass fractions of 0, 
and 0,. Equations (9) and (10) were non-dimensionalized with t ,  = 58.78 ps ,  tj, = 5.0478 x 
low6 g/cm2 and To = 300 K ,  where to is a characteristic chemical time scale (there are in general 
a number of such scales due to the fact that there is a wide variation among the rates at which the 
different chemical reactions occur; the differential equations are therefore stiff), t,h, is a 
characteristic *-value defined as the product of the unburned gas density and a characteristic 
diffusion length (in our calculations, the characteristic diffusion length was defined as (pOAtO/Cp)1/2 
where p ,  is the unburned gas density) and To( = 300 K) is the unburned gas temperature. Note that 
for the ozone decomposition flame N = 3, and that equations (9) and (10) can be written in vector 
form as 

dA/at* = ad2A/a$2 + S (14) 
where 

AT = (T, y,, Y,) 

and the superscript T denotes transpose. 
Equations (14), (15) and (16) were subjected to the following boundary and initial conditions 

aA/a*(t, - 00) = dA/dtj(t, 00) = 0 (17) 
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where t j T  = 50$, = 2.5239 x g/cm2, and where the domain - co < $ < 00 has been truncated 
to 0 6 $ 6  $T. The downstream location of the truncated domain corresponds to that of R a r n o ~ . ~  
The initial conditions given by equations (18) and (19) were non-dirnensionalized in exactly the same 
manner as equations (9) and (10). Equation (14) yields the values of T, Y, and Y2. The value of Y, 
can be calculated from equation (5). The value of p can be calculated from the equation of state, i.e. 
equation (6). The value of x can be calculated from equation (8) as follows: 

J, 

x= j d$lP 

s: 

- m  

which in the truncated domain can be written as 
J, 

0 
dll//p, O < $ < $ T  

For convenience we define a non-dimensional Cartesian co-ordinate X as 

x = XP*/$O = d(+/*O)/(P/PO) 

where po is the density of the unburned gases ( p o  = 1.201 x 1O-,g/crn3) which are located at 
the upstream boundary. 

Under steady state conditions one can define a steady state wave speed as follows 

aYi/at* + uiayi/a$ = 0, i = i ,2 (23) 
which when substituted into equation (10) yields, after integration, 

Ui[ Yi(t*, - 00) - Yi(t*, co)] = wid$/p, i = 1,2 (24) 

Note that equation (24) yields two steady state flame speeds for Y, and Y2. These speeds are the 
same in steady state. 

ADAPTIVE FINITE ELEMENT FORMULATION 

As we mentioned before the domain - co < $ < co was truncated to 0 < $ < $T. We define $, = 0 
and I+&+ = $T, where NE is the number of elements. If an equally-spaced grid is used in the 
calculations with mesh spacing h then NE = ($T - $,)/k. The ozone flame is characterized by the 
presence of very localized and steep temperature and concentration gradients. One would like to 
resolve these steep gradients very accurately because they correspond to the flame front where the 
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conversion of fuel and oxidizer to combustion products occurs. Evidently, one would like to 
concentrate the grid points where they are needed, i.e. at the flame front. Thus, unequally-spaced 
grids are desirable. 

By analogy with the case of equally-spaced grids we define a function h($) which represents the 
grid spacing or size of the finite elements in such a manner that the total number of elements in 
0 d $ < t,bT is fixed and equal to NE. We then have that 

f ‘bT 

is a constraint that must be satisfied. Note that if h($) = constant we obtain the expression that we 
derived before for an equally-spaced grid, i.e. NE = ($T - $&h. Furthermore, we know that if the 
maximum temperature gradient is located at $m, a measurement of the smallest grid spacing is 

where AT= Tb - T, and Tb and T, are the temperatures of the burned ($ = ~,b~) and un- 
burned ($ = 0) gases, i.e. 1250 K and 300 K, respectively. In practice, the right-hand side of 
equation (25) can be multiplied by a constant (in the calculations reported here this constant is 4) 
which is related to the number of elements in the region of largest temperature gradient. 

Equation (26) yields the value of the minimum grid spacing once the location of the largest 
temperature gradient is known. However, it does not yield any information about the location of 
other grid points. This information can be obtained by remembering that our objective is to resolve 
the flame front. Therefore, a large number of grid points should be placed there. This means that the 
grid spacing variations at the flame front (the grid spacing variations are defined as dh/d$, i.e. as the 
change in the size of the finite elements in space) should be minimized. This can be achieved by 
defining a functional which is related to the grid spacing variations. One such functional is 

The minimization of the functional defined of equation (27) will yield the grid spacing. However, 
this functional is subjected to the constraint given by equation (25), i.e. the number of elements is 
fixed. Introducing the Lagrange multiplier P and minimizing the functional F(h) subjected to the 
constraint NE (equation (25)) one obtains the following differential equation 

whose solution can be written as 

Equation (29) has been obtained from the solution of equation (28) by requiring that the minimum 
element size be placed at $rn, i.e. at the location of the largest temperature gradient, and by 
requiring that (i3h/i31c/),m = 0. This condition means that the minimum grid spacing or the smallest 
finite element is located at the flame front. 

Equation (29) could have been postulated as the grid spacing criterion. Other possible grid 
location techniques are, of course, possible as can be easily seen by defining other F(h) functional 
(cf. equation (27)). Note that the grid spacing defined by equation (29) is based on the assumption 



18 J. 1. RAMOS 

that the number of finite elements employed in the calculations is fixed, i.e. equation (25). 
Therefore, the adaptive technique developed here cannot be used in its present form in problems 
characterized by the presence of several moving steep gradient regions. 

Substituting equation (29) into equation (25) and integrating, one can calculate the value of P as 

NE JP = arctan (-c $ - + m  JP y) 1 *=*' 

2 *=0 

Equation (30) can also be used to calculate the location of the elements by replacing the value of NE 
by i and t(lT by $i where i = 2,3,. . . , NE. 

Note that the co-ordinates of the element nodes, $i, depend on the location of the largest 
temperature gradient through equations (30) and (26). However, the locations of sl/l and I,&+ 
were kept fixed and equal to 0 and &, respectively. 

Equations (28) and (30) yield the locations of the grid points once the location of the largest 
temperature gradient is known. In unsteady flame propagation problems such as the one studied 
here, the location of the steepest temperature gradient varies with time. If we evaluate equations 
(26), (29) and (30) at each time step we would obtain an accurate but expensive numerical 
procedure. Numerical experiments suggest that it is very expensive to redefine a grid every time 
step and that substantial savings without much loss of accuracy can be achieved by defining a 
suitable criterion for grid redefinition. In the calculations reported here, the following procedure 
for grid redefinition was found accurate and inexpensive. 

Suppose that $; and hk denote the location of the largest temperature gradient and the 
minimum nodal spacing at time t". Then, the mesh was only redefined if the new t/irn and hm, i.e. the 
values of $rn and hm at time t n + l ,  violated either of the two inequalities 

$ m - h m  6 $> 6 +m + h m  (3 1) 

h&/2 < hm d 2hL (32) 
If one of the criteria defined by equations (3 1) and (32) is violated in the calculations, the grid has to 
be redefined. A method is required to calculate the values of the dependent variables in the new grid 
based upon the values obtained in the old (previous) grid. This can be achieved in several ways such 
as interpolation or projection methods. In the calculations reported here, the solution variables, i.e. 
the values of T, Y ,  and Y,, were mapped onto the new mesh using the projection method developed 
by Lee and Ramos.8 

Assume that the solution at time t" = nAt is known and given by 

where aj  is the nodal amplitude and Cbj are the finite element basis which, in the calculations 
reported here, are the standard roof functions. Suppose also that at this time the mesh has to be 
redefined. Evidently, the values of the nodal amplitudes at time t" in the new grid are needed 
because these values are the initial conditions for the next time step. Suppose then that qby+'(+) are 
the new finite element basis. We then define the initial conditions in the new grid as 

and the functional 

I =$(A*,  A* )  - (A",  A * )  (35) 
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where the inner product is given by 
@T 

0 
(A", A*) = j A"A* d$ 

The minimization of I yields the values of the nodal amplitudes, b;(t), in the new grid. 
So far we have defined the criteria for grid location and redefinition, but we have not indicated 

the solution method for equation (14). In the calculations reported here we have employed a finite 
element algorithm which makes use of linear basis, i.e. the standard roof functions, as follows. 
Equation (14) is multiplied by t$j and integrated by parts, to yield, after substituting 

NE+ 1 

the following equation 

where 
f * T  

Equation (38) represents a system of ordinary differential equations for the nodal amplitudes 
4[( t ) .  These differential equations were discretized at t'" to yield the following system of algebraic 
equations 

which were solved iteratively until the following convergence criterion was reached 
N E + l  
C J[I(A?)'+' - (A?)kI]/(NE + I )  6 

i =  1 

where k denotes iteration. 

PRESENTATION O F  RESULTS 

The calculations reported here were performed with 36 elements. Some representative results are 
shown in Figures 1-10. These results were computed with a time step equal to 1 p s  which is about 
60 times smaller than the time employed in the non-dimensionalization of the equations. 

Figures 1-5 show the temperature and species mass fraction profiles at different times as a 
function of $/$o, and Figures 5-10 show the temperature and species mass fraction profiles at 
different times as a function of the non-dimensional Cartesian co-ordinate X (cf, equation (22)). 
These Figures show the early development of the flame, the diffusion of heat and the approach to 
the final steady state values. The flame speeds given by equation (24) differ from each other by less 
than 0.05 per cent and correspond to a value of 49.75 cm/s at a time equal to 2057 ps.  This flame 
speed is in very good agreement with those calculated by Margolis,' Reitz4 and Ramos.' For 
convenience the results of this and previous studies are shown in Table I. It can be seen from this 
Table that the adaptive finite element method developed in this paper is in very good agreement 
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Table 1. Comparison of the ozone decomposition steady state flame speed 

Steady state 
flame speed, 

Investigator Reference Numerical method Number of grid points cm/s 

Bledjian 

Margolis 
Meintjes 

Reitz 

Ramos 

Ramos 

Ramos 

Ramos 

Ramos 

Ramos 

Ramos 

Ramos 

1 

5 

5 

5 

This work 

Second-order accurate 
method of lines 
Sixth-order B-splines 
Explicit predictor--- 
corrector 
Explicit, adaptive 
finite-difference 
Fourth-order accurate 
method of lines 
Fourth-order operator- 
splitting method 
First-order time- 
linearization 
Second-order time- 
linearization 
Fourth-order time- 
linearization 
Moving finite 
element method 
Adaptive finite 
element method 
Adaptive finite 
element method 

100 

272 collocation points 
121 

30 

121 

121 

121 

121 

121 

36 

36 

36 

54.3 

49.7 
48 I: 2 

49.8 F 0.1 

49.57 

49.5 1 

48.9 1 

48.97 

49.38 

49.26 

49.41 

49.76 

with the adaptive finite-difference scheme of Reitz4 and the adaptive and moving finite element 
methods of Ramos.’ The steady flame speeds are also in very good agreement with the more 
accurate, fixed-node technique of Margolis’ and the fourth-order accurate method of lines and 
operator-splitting technique of Ramos.’ 

The main difference between the results presented here and those of Margolis’ appear in the 
atomic oxygen profile. Our calculations indicate that the atomic oxygen decreases slightly slower 
than that computed by Margolis.’ The results, however, are in very good agreement with those 
reported by Reitz4 and Ramos.’ 

The numerical results presented here indicate that very accurate temperature and species mass 
fraction profiles, and flame speeds can be obtained with adaptive finite element methods since these 
methods concentrate most of the elements at the flame front where the largest temperature and 
species mass fraction gradients occur. They also indicate that the simplest finite element basis can 
yield results as accurate as fixed-node, fourth-order accurate finite-difference techniques while 
using a smaller number of nodes. 

CONCLUSIONS 

An adaptive finite element method has been developed and applied to study the ozone 
decomposition laminar flame. The method uses a fixed number of elements and a semidiscrete, 
linear Galerkin approximation. The nodes and size of the elements are moved according to the 
location of the largest temperature gradient in such a way that the mesh spacing is minimized. A 
criterion for mesh redefinition based on a projection method has also been introduced. 
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The system of ordinary differential equations which govern the nodal amplitudes was solved 
iteratively, and the non-linear reaction terms were linearized. The calculations show that the finite 
element results reported here are in very good agreement with those computed using fourth-order 
accurate, fixed-node finite-difference techniques. This is because the nodes and elements are 
concentrated at the flame front where the largest temperature and species mass fraction gradients 
occur. However, the adaptive finite element method presented here employs a fixed number of 
elements and a parabolic grid spacing. Although this mesh spacing shows some advantanges for 
the problem treated here, it is still crude and can be easily improved on. In addition, the adaptive 
method developed in this paper cannot deal in its present form with problems characterized by the 
presence of multiple moving fronts. 

In spite of the accuracy and efficiency of the adaptive finite element technique developed in this 
paper, much more work is needed to assess its potential and to determine error estimates in 
problems characterized by the presence of moving fronts. 
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